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Ground-state entropies of the Potts antiferromagnet on diamond hierarchical lattices
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The ground-state degeneracies of theq-state Potts antiferromagnet on general diamond hierarchical lattices
are computed, forq>3, by means of two distinct methods. The first method, denominated the recursive
approach, is based on exact recursion relations for the total number of ground states, leading to the exact
ground-state entropy in the thermodynamic limit. The second method, called the factorization approach, con-
sists in a simple approximation, where the total number of ground states is factorized as a product of the
number of ground states at each hierarchy level. The factorization approach appears to be a poor approximation
for small values ofq, but its accuracy improves substantially asq increases, and it becomes exact in the limit
q→`. In spite of the fact that such a model presents no frustration, a residual entropy at zero temperature is
found for all q>3. Similarly to what happens on Bravais lattices, the residual entropy approaches its maxi-
mum allowed value, lnq, asq increases.
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I. INTRODUCTION

The q-state Potts model@1# has attracted the attention o
many workers since its original formulation@2#. Apart from
representing a generalization of the most investigated sys
in statistical mechanics—the Ising model~the particular case
q52 of the Potts model!—it has been identified, forqÞ2,
with many other theoretical models, and has also been c
sidered as the appropriate model for describing many ph
cal phenomena@1#. Curiously, for the nearest-neighbo
interaction antiferromagnetic Potts model withq.2, one
may easily see that the minimization of energy associa
with any closed loop, at low temperatures, occurs with
conflict of interactions, in such a way that all interactio
between nearest-neighbor spins remain satisfied. There
the concept of frustration@3#, which plays a central role in
the ground-state~GS! degeneracy of someq52 antiferro-
magnetic models, e.g., the antiferromagnetic Ising mode
a triangular lattice, becomes irrelevant forq>3. Even
though there is no frustration, the antiferromagnetic Po
model may present, for sufficiently large values ofq, a finite
GS entropy per particle~usually denominated the residu
entropy!; this occurs due to the fact that one may have m
than one choice of spin states that minimize the energy
given sites of the lattice, leading to a multiplicity of groun
states. That makes the antiferromagnetic Potts model an
ception to the third law of thermodynamics.

Usually, for systems that present a large multiplicity
low-temperature states, the total number of GS’s,NGS, in-
creases exponentially with the number of sitesN,

NGS;exp~hN!, ~1.1!

whereh is some positive finite number@for the Potts model,

*Corresponding author. Email address: nobre@dfte.ufrn.br
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0<h< ln q, since the maximum number of states isqN

5exp(N ln q)]. In the thermodynamic limit, one gets thath
5s0 /kB , wheres0 denotes the residual entropy.

The calculation of the GS entropy of the Potts antifer
magnet on Bravais lattices is a long-standing problem@4–7#.
Although a lot of effort has been dedicated to this matt
most of the known results are due to approximations~see,
e.g., Ref.@7# and references therein!; only a few exact results
are known, e.g., for the square lattice with the special c
q53 one hass05(3/2)ln(4/3) @4#, whereas for the triangula
lattice,s0 has been calculated for several values ofq @5,6#.

The study of magnetic models on fractal lattices, as w
as serving in practice to model natural materials such as
rous rocks, aerogels, sponges, etc., has provided usefu
sults for the comprehension of the corresponding system
Bravais lattices. In particular, the hierarchical lattic
~HL’s!—generated through recursive procedures—are m
easier to handle@under the real-space renormalization gro
~RG!#, in such a way that exact results may be obtained
short-range systems@8–10#. For pure systems defined o
Bravais lattices, the RG procedure works as an approxi
tion that may be implemented by means of a spin-decima
process which leads to RG equations. In the correspond
HL, such a procedure is exact for discrete classical spin v
ables, if within a few RG steps one gets nonproliferated R
equations connecting two successive hierarchy levels. S
particular HL’s have been very successful in mimicking Br
vais lattices@10#, e.g., providing exact critical temperature
and exponents of magnetic models on the square lattice

In the present work we calculate the GS degeneracy of
Potts antiferromagnet for the family of diamond HL’s; we d
that through the application of two different methods, pre
oulsy defined for Ising systems@11–13#. In the first method,
denominated here the recursive approach~RA!, one calcu-
lates the GS degeneracy recursively, through exact recur
relations based on the particular properties of the lattice.
main obstacle in the RA turns out to be in working out t
recursion relations, which is not always feasible. In the s
©2002 The American Physical Society07-1
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ond method, the factorization approach~FA!, the total num-
ber of GS’s at hierarchy leveln is expressed as a product
properly defined partial number of GS’s at hierarchy lev
n,n21, . . . ,1 @11#. In general, the FA is an approximation
leading to the exact result only for very simple systems@12#,
whereas in most cases it yields lower estimates@13# when
compared with those obtained through the RA; howeve
appears to be very useful, since it leads to a great simp
cation in the calculations and also due to the fact that it m
provide accurate results in some cases@12#. The present pa-
per is organized as follows. In the next section we discuss
RG transformation at zero temperature and the method
calculation. In Sec. III we apply both methods to estimate
GS entropies of theq-state antiferromagnetic Potts model o
general diamond HL’s. Finally, in Sec. IV we present o
conclusions.

II. THE MODEL AND FORMALISM

Let us consider theq-state antiferromagnetic Potts mode
defined in terms of the Hamiltonian

H52J(̂
i j &

d~s i ,s j ! ~J,0,s i51,2, . . . ,q!, ~2.1!

where the sum(^ i j & is restricted to nearest-neighbor pairs
spins on a given diamond HL. At hierarchy level 0 one h
N(0)52 sites connected by a single bondNb

(0)51, whereas
at hierarchy level 1 one has a single cell, such as the
shown in Fig. 1; such a cell consists ofm parallel paths
connecting the external sitesi and j, each path containingb
bonds in series. The cell shown in Fig. 1 will be conside
as the basic unit cell for the lattice at an arbitrary hierarc
level k, which is generated in such a way that at each ste
single bond is replaced by a unit cell. The fractal dimens

FIG. 1. The basic unit cell of the diamond HL considered; th
arem parallel one-dimensional paths, each of them composedb
bonds in series~scaling factorb). The fractal dimension of such
lattice is d5 ln(bm)/ln b. The spins at the terminal sites~empty
circles! belong to previous hierarchy levels and are connected
other spins of the lattice; the spins at the internal sites~black
circles! are to be decimated throughout the renormalization proc
This basic unit cell corresponds to the HL at its hierarchy levek
51.
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of such a HL isd5@ ln(bm)/ln b#, whereas the number o
bonds (Nb

(k)), cells (Nc
(k)), sites generated at levelk (Ñ(k)),

and total number of sites (N(k)), at an arbitrary hierarchy
level k, are given, respectively, by

Nb
(k)5~bm!k, Nc

(k)5~bm!k21, ~2.2!

Ñ(k)5~b21!mNc
(k) ,

N(k)521~b21!m
~bm!k21

bm21
. ~2.3!

One may easily obtain exact recursion relationst85 f (t)
for the thermal transmissivities@10#

t5
12exp~2qJ/kBT!

11~q21!exp~2qJ/kBT!
~2.4!

of two successive hierarchy levels,t8 @hierarchy level (k
21)] and t ~hierarchy levelk). It is important to mention
that the thermal transmissivities, as defined above, are
ited to the rangetP@21/(q21),1#. Such recursion relations
lead to plots oft8 versust like the ones exhibited in Fig. 2

Let us now consider, in such systems, the ze
temperature limitT→0; in general, one may write

t'a@12c1exp~2c2 /T!#, ~2.5!

where the leading contributiona, which corresponds unde
the RG procedure to the zero-temperature point of our re

e

to

s.

FIG. 2. Plots of the renormalized transmissivityt8 versus the
original transmissivityt for the q-state Potts antiferromagnet o
diamond HL’s:~a! Caseq53, b52, andm52; ~b! caseq53, b
53, andm53. The zero-temperature point (t521/2) is given by
a5 lim

T→0
t8(T)50.5 in case~a!, whereasa>20.306 45 in case

~b!. In both situations,a is different from the extreme values for th
transmissivities, i.e.,aÞ21/2,1.
7-2
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sion relation, i.e., fort521 one getsa5 lim
T→0

t8(T), may

be calculated for the cell shown in Fig. 1,

a5
x2y

x1~q21!y
, ~2.6!

where

x5~q21!m@~q21!b211~21!b#m,

y5@~q21!b2~21!b#m. ~2.7!

Under renormalization, the effective interactions amo
spins are given by

J852 lim
T→0

kBT

q
ln F 12t8~T!

11~q21!t8~T! G , ~2.8!

which clearly implies that, whenever the argument of t
logarithm is a finite constant, the interactions between sp
are driven to zero, at the first renormalization step. The o
exceptions to this rule may occur at the extreme values of
interval for the transmissivities, i.e., whent851 ~argument
of the logarithm is zero! and t8521/(q21) ~argument of
the logarithm diverges!. A similar behavior has already bee
found in some fully frustrated Ising models, defined on s
cial HL’s @12#. Curiously, this effect occurs also for the a
tiferromagnetic Potts model—which does not pres
frustration—on diamond HL’s.

Let us investigate in which cases the zero-tempera
limit of the renormalized transmissivity,a5 lim

T→0
t8(T),

assumes the extreme values mentioned above. From
~2.6! and ~2.7! one gets thata51 if y50; the possible rea
solutions in this case areq50 (b,m positive integers! and
q52 (b positive even integer,m positive integer!. On the
other hand,a521/(q21) occurs ifx50; in this case, the
only possible real solution withq.1 appears to be the Isin
case, q52 (b positive odd integer,m positive integer!.
Therefore, for theq-state Potts antiferromagnet on gene
diamond HL’s, one always hasaÞ21/(q21),1, if q>3
~typical examples are shown in Fig. 2!. Other examples ex
hibiting a zero-temperature limit of the renormalized tran
missivity, lying in between the two extremum values, we
found for antiferromagnetic Potts models on different frac
lattices@14#, as well as on a particular case of the diamo
HL considered here@15#. Since the caseq52 has already
been discussed for fully frustrated HL’s@12#, as well as for
diamond HL’s with random interactions~Ising spin glass!
@11#, we shall concentrate our analysis here in the caseq
>3.

Therefore, at zero temperature, the interactions betw
spins in our model are antiferromagnetic at the last hierar
level n, and zero for all lower hierarchies,n21,n
22, . . . ,0. Such curious zero-temperature behavior impl
that the spins belonging to hierarchy levelsn21,n
22, . . . ,0, arecompletely uncorrelated~as in the high-
temperature phase!, contributing with the maximum numbe
03610
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of states to the GS degeneracy. This is a crucial point for
calculation of the GS degeneracy, as will be seen later.

Let us now introduce the two methods for calculating t
GS dengeneracy; we shall briefly review these metho
since they have been extensively discussed in previous w
@12,13#. First of all, let us fix the terminal spins of each un
cell; for a Potts system, there areq2 ways of doing this for a
single cell on a diamond HL. For each fixed configuration
terminal spins in a unit cell, one may have a certain num
of GS’s associated with the internal spins of the cell. W
shall denote by$ga(q,b,m)% the possible set of GS degen
eracies associated with the unit cell shown in Fig. 1, wh
the labela refers to configurations of terminal spins of th
cell presenting different values of degeneracies. Due to
Potts symmetry, the unit cell shown in Fig. 1 may pres
only two types of degeneracies, i.e.,a51,2; here, we will
associate the degeneraciesg1(q,b,m) and g2(q,b,m) with
the cases of terminal spins in the same, and in different P
states, respectively.

The RA @12# is based on the recursive properties of t
HL; the central idea is to express GS degeneracies at a g
hierarchy level in terms of those of the previous hierarc
By fixing the spins of the hierarchy level 0, one has tw
possible degeneracies, at an arbitrary hierarchy levek,
G1

(k)(q,b,m) and G2
(k)(q,b,m), associated with termina

spins in the same or in different Potts states, respectiv
Such degeneracies follow the recursion relations

G1
(k)~q,b,m!5C1„G1

(k21)~q,b,m!,G2
(k21)~q,b,m!…,

~2.9a!

G2
(k)~q,b,m!5C2„G1

(k21)~q,b,m!,G2
(k21)~q,b,m!….

~2.9b!

Since one may compute easily the set of degeneracie
hierarchy level 1, $Ga

(1)%[$ga%, the recursion relations
above may be followed up to any desired hierarchy lev
The total number of GS’s of the HL at itsnth hierarchy level
is expressed as

NGS
(n)~q,b,m!5a1G1

(n)~q,b,m!1a2G2
(n)~q,b,m!,

~2.10a!

G1
(n)~q,b,m!5C18„g1~q,b,m!,g2~q,b,m!…, ~2.10b!

G2
(n)~q,b,m!5C28„g1~q,b,m!,g2~q,b,m!…, ~2.10c!

where the coefficientsaa count how many different configu
rations of the spins at level 0 contribute to the sameGa

(n) .
For Potts models on diamond HL’s, one hasa15q and a2
5q(q21).

If one succeeds in obtaining the recursion relations ab
exactly, the RA yields the exact number of GS’s of the HL
its nth hierarchy level. Sometimes, working out such rec
sion relations turns out to be a difficult task; in such cas
one may use an approximation, the FA, which is a mu
simpler method, to be defined below.

One may partially count the number of GS’s of the HL b
fixing the terminal spins of each unit cell. We shall deno
the number representing this partial counting byG (n). In a
7-3
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HL all unit cells present terminal spins belonging to lowe
level hierarchies; under the RG procedure, each terminal
will become an internal one at its respective hierarchy lev
Therefore, one may write the number of GS’s, calcula
within the FA @11#, as

NGSFA
(n) ~q,b,m!5^G (n)~q,b,m!&^G (n21)~q,b,m!&

3^G (n22)~q,b,m!&•••^G (1)~q,b,m!&A,

~2.11!

where the factorA5q2 corresponds to the number of stat
associated with hierarchy level 0, and^•••& stands for an
average to be defined below. It is important to mention th
the total number of GS’s may be factorized exactly in t
above form only for very particular cases@12#; in most situ-
ations, Eq.~2.11! expresses a lower bound for the number
GS’s, i.e.,NGSFA<NGS @13#.

For an arbitrary hierarchy levelk of a diamond HL, the
partial counting may be written as

G (k)~q,b,m!5@g1~q,b,m!#Nc,1
(k)

@g2~q,b,m!#Nc,2
(k)

,
~2.12!

whereNc,a
(k) denotes the number of unit cells with degenera

ga in the HL at itskth hierarchy level. In simple system
Nc,a

(k) may be calculated exactly, whereas in more com
cated problems one may replaceNc,a

(k) by the average value
@11#

fa
(k)5Nc

(k)Fa
(k) , (

a
fa

(k)5Nc
(k) , ~2.13!

whereFa
(k) represents the probability of finding a unit cell

type a at hierarchy levelk. Such a procedure leads to th
average estimate

^G (k)~q,b,m!#&5@g1~q,b,m!#f1
(k)

@g2~q,b,m!#f2
(k)

~2.14!

used in Eq.~2.11!. In the next section, we apply both met
ods to calculate the GS entropies of theq-state Potts antifer-
romagnet on general diamond HL’s.

III. CALCULATION OF GS ENTROPIES

As discussed in the previous section, all casesq>3 lead
to zero effective interactions after the first RG iteratio
Therefore, for the present model on a HL at thenth hierarchy
level, the interactions will be considered as antiferromagn
tic at k5n and zero for all other hierarchy levels.

Let us now implement the RA, starting, as usual, with t
casen51, which consists in a single unit cell. Since the c
of Fig. 1 is composed bym independent parallel paths, all o
them connecting the same external sites, the degener
associated with such a cell may be written as

G1
(1)~q,b,m![g1~q,b,m!5@L1

(1)~q,b!#m,

G2
(1)~q,b,m![g2~q,b,m!5@L2

(1)~q,b!#m, ~3.1!
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where La
(k)(q,b) denotes the degeneracy of a single on

dimensional path connecting the external sites of the u
cell. The expressions forLa

(k)(q,b) may be calculated easily
for small values ofb; for b52 one gets

L1
(1)~q,2!5q21, L2

(1)~q,2!5q22, ~3.2!

whereas forb53

L1
(1)~q,3!5~q21!~q22!,

L2
(1)~q,3!5q211~q22!2. ~3.3!

The degeneracy associated with a one-dimensional p
with a general value ofb, may be calculated by decomposin
such a path into smaller pieces. Obviously, there are sev
equivalent ways of carrying out such a procedure; here,
consider the decomposition of a one-dimensional path witb
bonds into two pieces, one containingb8 and the otherb9
(b8,b9,b andb81b95b). One gets

L1
(1)~q,b!5L1

(1)~q,b8!L1
(1)~q,b9!

1~q21!L2
(1)~q,b8!L2

(1)~q,b9!, ~3.4a!

L2
(1)~q,b!5L1

(1)~q,b8!L2
(1)~q,b9!

1L2
(1)~q,b8!L1

(1)~q,b9!

1~q22!L2
(1)~q,b8!L2

(1)~q,b9!. ~3.4b!

Applying the decomposition procedure for the casesb54
andb55 one obtains, respectively,

L1
(1)~q,4!5~q21!21~q21!~q22!2, ~3.5a!

L2
(1)~q,4!52~q21!~q22!1~q22!3, ~3.5b!

L1
(1)~q,5!5~q21!2~q22!1~q21!~q22!

3@~q21!1~q22!2#, ~3.6a!

L2
(1)~q,5!5~q21!@~q21!1~q22!2#

1~q21!~q22!21~q22!2@~q21!

1~q22!2#. ~3.6b!

Using the results above in Eqs.~3.1! and ~2.10a!, one gets
the total number of GS’s at hierarchy leveln51.

Let us now consider the hierarchy leveln52, at which
each bond of the cell in Fig. 1 will become a unit cell. O
has

G1
(2)~q,b,m!5@L1

(2)~q,b,m!#m,

G2
(2)~q,b,m!5@L2

(2)~q,b,m!#m, ~3.7!

where the degeneraciesLa
(2)(q,b,m) now present a depen

dence on the number of parallel pathsm of the previous
7-4
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hierarchy level. Such degeneracies may be easily calcul
for small values ofb, e.g., forb52,

L1
(2)~q,2,m!5@g1~q,2,m!#21~q21!@g2~q,2,m!#2,

~3.8a!

L2
(2)~q,2,m!52g1~q,2,m!g2~q,2,m!

1~q22!@g2~q,2,m!#2, ~3.8b!

and forb53,

L1
(2)~q,3,m!5@g1~q,3,m!#313~q21!g1~q,3,m!

3@g2~q,3,m!#2

1~q21!~q22!@g2~q,3,m!#3, ~3.9a!
03610
edL2
(2)~q,3,m!53@g1~q,3,m!#2g2~q,3,m!

13~q22!g1~q,3,m!@g2~q,3,m!#21@~q21!

1~q22!2#@g2~q,3,m!#3. ~3.9b!

For higher values ofb, one may apply a similar decompos
tion recipe as the one employed for hierarchy leveln51 @see
Eqs.~3.4!#, by replacing each of theb bonds by a unit cell. It
should be pointed out that the expressions forb53 in Eqs.
~3.9! may also be calculated using such a procedure, wit
decomposition into two smaller pieces,b851 and b952.
The caseb54 may be calculated through several differe
decompositions, e.g., the choicesb851 and b953, or b8
5b952, are equivalent, and lead to
L1
(2)~q,4,m!5@g1~q,4,m!#414~q21!~q22!g1~q,4,m!@g2~q,4,m!#316~q21!@g1~q,4,m!#2@g2~q,4,m!#21@~q21!~q

22!21~q21!2#@g2~q,4,m!#4, ~3.10a!

L2
(2)~q,4,m!54@g1~q,4,m!#3g2~q,4,m!14@~q22!21~q21!#g1~q,4,m!@g2~q,4,m!#316~q22!@g1~q,4,m!#2@g2~q,4,m!#2

1@2~q21!~q22!1~q22!3#@g2~q,4,m!#4. ~3.10b!
cies
f

One can now generalize the RA for a diamond HL on itsnth
hierarchy level; the total number of GS’s is given by

NGS
(n)~q,b,m!5a1G1

(n)~q,b,m!1a2G2
(n)~q,b,m!,

~3.11!

where

G1
(n)~q,b,m!5@L1

(n)~q,b,m!#m,

G2
(n)~q,b,m!5@L2

(n)~q,b,m!#m. ~3.12!

Using the fact that La
(n)(q,b,m) are related to

Ga
(n21)(q,b,m) and Ga

(n21)(q,b,m)5@La
(n21)(q,b,m)#m,
one may obtain a recursion relation for the degenera
La

(k)(q,b,m). For b52 andb53 one has generalizations o
Eqs.~3.8! and ~3.9!, which are given, respectively, by

L1
(n)~q,2,m!5@L1

(n21)~q,2,m!#2m1~q21!

3@L2
(n21)~q,2,m!#2m, ~3.13a!

L2
(n)~q,2,m!52@L1

(n21)~q,2,m!L2
(n21)~q,2,m!#m

1~q22!@L2
(n21)~q,2,m!#2m, ~3.13b!

and
L1
(n)~q,3,m!5@L1

(n21)~q,3,m!#3m13~q21!@L1
(n21)~q,3,m!#m@L2

(n21)~q,3,m!#2m1~q21!~q22!@L2
(n21)~q,3,m!#3m,

~3.14a!

L2
(n)~q,3,m!53@L1

(n21)~q,3,m!#2m@L2
(n21)~q,3,m!#m13~q22!@L1

(n21)~q,3,m!#m@L2
(n21)~q,3,m!#2m1@~q21!1~q22!2#

3@L2
(n21)~q,3,m!#3m. ~3.14b!
7-5
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For higher values ofb, one may use a general form for th
decomposition procedure of Eqs.~3.4!,

L1
(n)~q,b,m!5L1

(n)~q,b8,m!L1
(n)~q,b9,m!

1~q21!L2
(n)~q,b8,m!L2

(n)~q,b9,m!,

~3.15a!

L2
(n)~q,b,m!5L1

(n)~q,b8,m!L2
(n)~q,b9,m!

1L2
(n)~q,b8,m!L1

(n)~q,b9,m!1~q

22!L2
(n)~q,b8,m!L2

(n)~q,b9,m!.

~3.15b!

Iterating the equations above, one may obtain the GS ent
per spin in the thermodynmic limit,

s0~q,b,m!5 lim
n→`

1

N(n)
ln NGS

(n)~q,b,m!. ~3.16!

Let us now turn to the FA; one gets for hierarchy leven
@see Eqs.~2.12! and ~3.1!#

G (n)~q,b,m!5@L1
(1)~q,b!#mNc,1

(n)
@L2

(1)~q,b!#mNc,2
(n)

,
~3.17!

whereas for all previous hierarchies, a zero effective inter
tion leads to

G (k)~q,b,m!5qÑ(k)
~k51,2, . . . ,n21!, ~3.18a!

with

(
k51

n21

Ñ(k)5~b21!m
~bm!n2121

bm21
. ~3.18b!

The probabilities of finding cells of type 1 and 2@see Eq.
~2.13!#, are given, respectively, byF1

(n)51/q and F2
(n)5(q

21)/q, and so we replaceNc,1
(n) and Nc,2

(n) by f1
(n)

5(1/q)Nc
(n) andf2

(n)5@(q21)/q#Nc
(n) . Using these results

in Eq. ~2.11!, one gets that

ln@NGSFA
(n) ~q,b,m!#5

m

q
~bm!n21$ ln@L1

(1)~q,b!#

1~q21!ln@L2
(1)~q,b!#%1F21~b

21!m
~bm!n2121

bm21 G ln q, ~3.19!

leading to the GS entropy per spin in the thermodynam
limit,
03610
py

c-

c

s0
(FA)~q,b,m!5

bm21

b~b21!qm
$ ln@L1

(1)~q,b!#

1~q21!ln@L2
(1)~q,b!#%1

1

bm
ln q.

~3.20!

In Tables I and II we present the residual entropies calcula
through both methods, for typical values ofq, and scaling
factorsb52 ~Table I! andb53 ~Table II!. A few points are
worth stressing, as we discuss below.

~i! The residual entropies increase withq, as expected,
and one may observe that the ratioss0(q,b,m)/ ln q and
s0

(FA)(q,b,m)/ ln q increase withq, indicating that the residua
entropies approach their maximum allowed values lnq, simi-
larly to what happens on Bravais lattices@7#.

~ii ! The RA yields the exact estimates for the diamo
HL’s discussed here. However, the iteration process may
to numerical difficulties at large hierarchies; in spite of th
we succeeded in computing the residual entropies wit
convergence up to five~in some cases, up to six! decimal
digits.

~iii ! As discussed elsewhere@13#, the FA yields lower
bounds for the residual entropies. It appears to be a p
approximation for small values ofq, but it improves its ac-
curacy for increasing values ofq. Indeed, in the limitq
→` the FA becomes exact, as we show below. Conside
only the dominant terms in the limitq→`, one gets

TABLE I. Residual entropies of theq-state antiferromagnetic
Potts model on diamond HL’s with scaling factorb52, for typical
values ofq. In each case, the upper value corresponds to the
estimates0(q,b,m), whereas the value below is the lower boun
calculated by means of the FA,s0

(FA)(q,b,m). The values ofm (m
5bd21) chosen are associated with HL’s with fractal dimensio
d52, 3, 4, and̀ . The RA estimates were obtained by looking
the convergence ofs0 through the iteration of Eqs.~3.11!–~3.13!;
the convergence becomes faster asm increases, in such a way tha
the iteration process was carried up ton512 (m52), n510 (m
54), n57 (m58), andn53 (m large, e.g.,m5300). The FA
estimates were obtained through Eq.~3.20! ~finite values ofm) and
Eq. ~3.26! ~limit m→`); above, we present the FA results up to s
decimal digits. The maximum allowed value for each residual
tropy is lnq, i.e., 1.098 612 . . . (q53), 1.386 294 . . . (q54), and
2.302 585 . . . (q510).

b52 q53 q54 q510

m52 0.549306~1! 0.969322~1! 2.145058~0!

0.447939 . . . 0.942458 . . . 2.144061 . . .
m54 0.607354~0! 0.973435~0! 2.120133~1!

0.339494 . . . 0.868486 . . . 2.117640 . . .
m58 0.649827~0! 1.030216~0! 2.112067~1!

0.285271 . . . 0.831499 . . . 2.104430 . . .
m→` 0.6925~1! 1.098~1! 2.195~1!

0.231049 . . . 0.794513 . . . 2.091219 . . .
7-6
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L1
(1)~q,b!,L2

(1)~q,b!;q(b21). ~3.21!

Substituting into Eq.~3.20!,

s0
(FA)~q,b,m!;

bm21

b~b21!qm
q~b21!ln q1

1

bm
ln q,

~3.22!

which leads tos0
(FA)(q,b,m); ln q. A similar result may be

obtained also through the RA; using Eq.~3.21! and iterating
Eqs.~3.13!–~3.15!, one concludes that

L1
(n)~q,b,m!,L2

(n)~q,b,m!;q(b21)@L2
(n21)~q,b,m!#bm,

~3.23!

and therefore

NGS
(n)~q,b,m!;a2G2

(n)~q,b,m!;q2@L2
(n)~q,b,m!#m.

~3.24!

Iterating Eq.~3.23!, one gets

L2
(n)~q,b,m!;q(b21)[(bm)n21]/(bm21), ~3.25!

TABLE II. Residual entropies of theq-state antiferromagnetic
Potts model on diamond HL’s with scaling factorb53, for typical
values ofq. In each case, the upper value corresponds to the
estimates0(q,b,m), whereas the value below is the lower bou
calculated by means of the FA,s0

(FA)(q,b,m). The values ofm (m
5bd21) chosen are associated with HL’s with fractal dimensio
d52, 3, 4, and̀ . The RA estimates were obtained by looking
the convergence ofs0 through the iteration of Eqs.~3.11!, ~3.12!,
and~3.14!; the convergence becomes faster asm increases, in such
a way that the iteration process was carried up ton58 (m53),
n56 (m59), n54 (m527), andn53 (m large, e.g.,m5100).
The FA estimates were obtained through Eq.~3.20! ~finite values of
m) and Eq.~3.26! ~limit m→`); above, we present the FA resul
up to six decimal digits. The maximum allowed value for ea
residual entropy is lnq, i.e., 1.098 612 . . . (q53), 1.386 294 . . .
(q54), and 2.302 585 . . . (q510).

b53 q53 q54 q510

m53 0.570818~0! 1.004491~1! 2.162111~0!

0.550271 . . . 1.001753 . . . 2.162100 . . .
m59 0.549804~0! 0.977181~0! 2.150429~0!

0.504576 . . . 0.969708 . . . 2.150393 . . .
m527 0.54930~1! 0.973037~1! 2.146594~1!

0.489344 . . . 0.959027 . . . 2.146491 . . .
m→` 0.54930~1! 0.97295~1! 2.1454~1!

0.481728 . . . 0.953686 . . . 2.144540 . . .
03610
which leads tos0(q,b,m); ln q.
~iv! For fixed values ofq and b, the residual entropies

approach well-defined limits, asm increases. This may be
easily seen within the FA, for which Eq.~3.20! leads to

lim
m→`

s0
(FA)~q,b,m!5

1

~b21!q
$ ln@L1

(1)~q,b!#

1~q21!ln@L2
(1)~q,b!#%. ~3.26!

Within the FA, the convergence toward the limitm→` oc-
curs in such a way that the residual entropy always decre
for increasing values ofm. In contrast to that, the way tha
such a convergence occurs within the RA may vary with b
q and b. Whenever this convergence in the RA occurs
increasing the residual entropy, a large discrepancy of the
estimate is obtained~see, e.g., the caseq53, b52, of Table
I!; however, one may get rather accurate estimates thro
the FA, when the convergence toward the limitm→` of the
RA occurs by decreasing the value of the residual entr
~see, e.g., the caseq510, b53 of Table II!.

IV. CONCLUSION

We have computed the ground-state entropies of an a
ferromagneticq-state Potts model on general diamond hi
archical lattices. Essentially, two methods were used for
calculation: the recursive approach, based on exact recur
relations for the number of ground states, and the factor
tion approach, which consists in factorizing the total numb
of ground states as a product of the number of ground st
in eeach hierarchy level. Whereas the former is an ex
procedure, the latter provides a lower bound for the grou
state entropy, with the advantage of a great simplification
the calculations. Apart from the fact that such a model p
sents no frustration, we have shown that for allq>3 there is
a residual entropy at zero temperature; in particular, the
sidual entropy approaches the maximum allowed value,q
as q increases. Although the factorization approach appe
to be a poor approximation for low values ofq, its accuracy
is substantially improved asq increases, in such a way that
becomes exact in the limitq→`. The application of the
present methods for the investigation of other models is
couraging and may produce insights into statistical syste
defined on fractal lattices.
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